THE MOLECULAR BASIS OF THE ANTICANCER PROPERTIES OF QUERCETIN

1 Foligno Nursing School, Department of Medicine, University of Perugia, Foligno, Perugia, Italy
2 Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
3 Department of NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
4 Department for Life Quality Studies, University of Bologna, Bologna, Italy
5 Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
6 Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
7 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
8 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
9 Department of Medicine, University of Perugia, Santa Maria Hospital, Terni, Italy
10 Department of Pharmacy, University of Naples Federico II, Naples, Italy

All the authors belong to the Working Group “Pharmacognosy, Phytotherapy and Nutraceuticals” of the Italian Pharmacological Society, Milan, Italy

E-mail: carmela.fimognari@unibo.it
Doi: 10.36118/pharmadvances.2021.10

SUMMARY
Quercetin is a major constituent of various dietary products, which is increasingly being investigated as a therapeutic option in the oncological field. It has attracted extensive interest due to its ability of interacting with different molecular targets and evoking a broad spectrum of chemopreventive and anticancer activities. In this review, we have tried to present and critically discuss its potential against an extensive range of cancers including lung, ovarian, prostate, breast, colorectal, bladder cancers. We also highlighted studies that combined quercetin with standard anticancer drugs and delivered it via novel techniques and included a detailed description of its proposed mechanism(s) of action, and pharmacokinetic and safety profile.

Key words
Quercetin; cancer; bioavailability; mechanisms of action; in vivo studies; in vitro studies.

Impact statement
Quercetin exhibits a broad spectrum of anticancer activities such as pro-apoptotic, antiproliferative, antiangiogenic, and antimetastatic effects and blocks an extensive range of cancers including lung, ovarian, prostate, breast, colorectal, bladder cancers.
INTRODUCTION
According to a 2021 report, cancer ranked as the first or second most common contributor to mortality across the world and a doubling of its incidence is predicted by 2070 relative to 2020 (1). Despite extensive knowledge on the molecular aspects of this disease, different modifications at molecular and genetic levels in cancer cells result in some difficulties to establish effective anticancer therapies and overcome drug resistance caused by cancer cells adapting to chemotherapy drugs. Chemicals occurring in vegetables, fruits, spices, grains, and other foods have been found to effectively improve the anticancer activity and protect against the side effects of conventional anticancer treatments. Quercetin (3,3',4',5,7-pentahydroxyflavone) (figure 1) is a ubiquitous dietary bioflavonoid widely synthesized in the leaves, flowers, fruits, and seeds of a variety of food plants (2). In plants, the synthesis of this specialized metabolite proceeds via the combination of the shikimate and acetate metabolic pathways. Quercetin may occur in plant cells as free aglycone, but most frequently in the conjugated water-soluble glycosylated form giving rise to a high number of quercetin derivatives (3). Quercetin-3-O-glycosides with glucose, galactose, xylose or rhamnose are the most common products, as an example quercitrin (quercetin-3-O-rhamnoside) and rutin (quercetin-3-O-rhamnosyl(1→6)glucoside); the hydroxyl group at C7 represents another common O-glycosylation site in the molecule. Both the hydroxyl functions at C3 and C7 are often substituted at the same time, as an example in 3-O-rhamnoside-7-O-glucoside. Quercetin C-glycosides are instead relatively rare in plants. Glycosides of quercetin can, additionally, contain acyl substituents (3). Other frequently occurring derivatives of quercetin include the formation of ethers (mostly with methanol to give the corresponding methoxy derivatives) and may contain up to five ether groups in various configurations; these compounds can also have sugar substituents.

Quercetin bounded forms with sulfate or alkyl residues are instead less present in plants (3). Quercetin has been proven to play a broad spectrum of anticancer activities such as pro-apoptotic, antiproliferative, antiangiogenic, and antimetastatic effects and blocks an extensive range of cancers including lung, ovarian, prostate, breast, colorectal, bladder cancers (4). In this review, we summarize and analyze the anticancer properties of quercetin on several systemic tumors in vivo and in vitro and its main cellular and molecular mechanisms. Quercetin’s chemistry, pharmacokinetics and safety are also briefly reviewed.

The basis of chemical structure
Despite its polyhydroxylated nature, quercetin is a lipophilic compound scarcely soluble in water; its derivatives can instead have a lipophilic or hydrophilic character depending on the type and number of functional groups. Generally, glycosylation increases the hydrophilicity of the molecule, whereas quercetin methyl and alkyl derivatives are lipophilic. Low solubility of the aglycone in water is a major challenge for its therapeutic applications (3). Quercetin polyhydroxylated nature also determines its bioactivity. The catechol-containing B ring (figure 1), the 2,3-double bond in conjugation with the carbonyl function at C4 in the C ring and the hydroxyl substitu-
ents at C3 and C5 positions are important reactive centers in the molecule. Quercetin gets easily oxidized and, primarily through the oxidation of its catechol group, can form a quite stable reactive free o-semiquinone radical acting as a reactive oxygen species (ROS)-scavenger. It can further undergo auto-oxidation and originate bioactive electrophilic tautomeric quinones that are able to bind to nucleophilic amino acid residues at active site of target enzymes. Moreover, the presence of the five hydroxyl groups enables quercetin to have chelating sites and form complexes with metal ions (especially copper and iron) thus inhibiting the metal-mediated generation of free oxidizing radicals (5). Quercetin is more active than its corresponding aglycone (3, 5).

PHARMACOKINETICS AND BIOAVAILABILITY

The chemical structure of the aglycone and the type and position of the sugar moiety are major determinants of absorption of quercetin, as well as the composition of the diet, with important consequences on pharmacokinetic parameters. For instance, dietary fat enhances the micellization of quercetin at the small intestine (table 1) and increases its absorption and bioavailability (6).

Quercetin occurs in crystalline form at body temperatures and is relatively lipophilic with low water solubility, poor bioaccessibility, and low oral bioavailability (table 1). For this reason, quercetin is often formulated as nanoparticles to improve its poor solubility and bioavailability. In the small intestine, quercetin aglycone passively diffuses from the intestinal lumen into the enterocytes where it is either directly absorbed (via passive diffusion) or metabolized before absorption (via active transport) into the hepatic portal vein (figure 2). Differently from the aglycone, glycosides can be transported into the enterocytes by the sodium-glucose cotransporter (SGLUT1, with a higher affinity for quercetin glucosides than other glycosides), and then deglycosylated by cytosolic hydrolases (figure 2). Moreover, quercetin glucosides are substrate for lactase phlorizin hydrolase (LPH, a family of β-glucosidases), a luminal brush border enzyme that catalyzes the deglycosylation and enables the aglycone to pass through enterocyte membranes via passive diffusion (figure 2). Again, the absorbed aglycone and its metabolites are transported passively or actively, respectively, into the hepatic portal vein. The absorbed aglycone bound to serum albumin and the metabolites are transported to the liver, where the aglycone is further metabolized (figure 2). Metabolism involves phase I and phase II reactions in enterocytes and hepatocytes to produce water-soluble derivatives (methyl, glucuronide, and sulfate conjugates), which are ultimately transported into the systemic circulation for distribution to target tissues (figure 2). The high levels of quercetin-conjugated metabolites detected in the bile indicate enterohepatic recirculation (figure 2). Indeed, some metabolites are excreted into the small intestine through this route and reabsorbed as aglycones after deconjugation catalyzed by bacterial β-glucuronidase and sulfatase. Noteworthy, after enterocyte absorption, quercetin, its glycosides and their metabolites can be effluxed back into the intestinal lumen by the multidrug resistance-associated pumps (7).

Finally, quercetin glycosides not absorbed in the small intestine reach the large intestine where they are fermented by the colonic microbiota (Bacteroides fragilis, Eubacterium ramulus, Clostridium perfringens, Bacteroides JY-6, Bifidobacterium B-9, Lactobacillus L-2, and Streptococcus S-2), which degrades quercetin aglycone into other phenolic compounds (mainly homoprocatechuic acid, protocatechuic acid and 4-hydroxybenzoic acid) by ring cleavage at the heterocyclic C-ring (figure 2) (8).
Table I. Intervention studies on quercetin pharmacokinetics involving healthy subjects consuming food sources of quercetin or treated with quercetin as pure compound.

<table>
<thead>
<tr>
<th>Food source/aglycone/glycoside</th>
<th>Quercetin dose</th>
<th>Plasma pharmacokinetics</th>
<th>Urinary excretion/concentration</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black tea (1600 mL/day) Onions (129 g/day)</td>
<td>49 mg (glycosides) 13 mg (glycosides)</td>
<td>NM NM</td>
<td>0.5% 1.1%</td>
<td>(123)</td>
</tr>
<tr>
<td>Black tea (375 mL/day) Onions (50 g/day) Red wine (750 mL/day)</td>
<td>13.7 mg 15.9 mg 14.2 mg</td>
<td>$C_{max} = 0.026 , \mu M$ $C_{max} = 0.053 , \mu M$ $C_{max} = 0.026 , \mu M$</td>
<td>$0.252 \mu M$ $0.509 \mu M$ $0.371 \mu M$</td>
<td>(124)</td>
</tr>
<tr>
<td>Onions (NR)</td>
<td>68 mg</td>
<td>$C_{max} = 0.74 , \mu M$ $T_{max} = 0.7 \pm 1.1 , h$ $T_{1/2} = 28 \pm 92 , h$ $AUC_{(0-36h)} = 7.71 , \mu M , h$</td>
<td>1.39%</td>
<td>(125)</td>
</tr>
<tr>
<td>Apple sauce + peel (NR)</td>
<td>98 mg</td>
<td>$C_{max} = 0.30 , \mu M$ $T_{max} = 2.5 \pm 0.7 , h$ $T_{1/2} = 23 \pm 32 , h$ $AUC_{(0-36h)} = 3.5 , \mu M , h$</td>
<td>0.44%</td>
<td></td>
</tr>
<tr>
<td>Rutin</td>
<td>100 mg</td>
<td>$C_{max} = 0.30 , \mu M$ $T_{max} = 9.3 \pm 1.8 , h$ $T_{1/2} = ND$ $AUC_{(0-36h)} = 3.3 , \mu M , h$</td>
<td>0.35%</td>
<td></td>
</tr>
<tr>
<td>Onions (160 g)</td>
<td>100 mg</td>
<td>$C_{max} = 2.31 , \mu M$ $T_{max} = 0.68 \pm 0.22 , h$ $T_{1/2} = 10.9 \pm 4.1 , h$ $AUC_{(0-24h)} = 32.1 , \mu M , h$</td>
<td>6.4%</td>
<td>(126)</td>
</tr>
<tr>
<td>Quercetin-4′-O-glucoside</td>
<td>100 mg</td>
<td>$C_{max} = 2.12 , \mu M$ $T_{max} = 0.70 \pm 0.31 , h$ $T_{1/2} = 11.9 \pm 4.0 , h$ $AUC_{(0-24h)} = 27.8 , \mu M , h$</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Buckwheat tea (NR)</td>
<td>200 mg</td>
<td>$C_{max} = 0.64 , \mu M$ $T_{max} = 4.32 \pm 1.83 , h$ $T_{1/2} = 10.3 \pm 3.5 , h$ $AUC_{(0-36h)} = 12.6 , \mu M , h$</td>
<td>1.0%</td>
<td></td>
</tr>
<tr>
<td>Rutin</td>
<td>200 mg</td>
<td>$C_{max} = 0.32 , \mu M$ $T_{max} = 6.98 \pm 2.94 , h$ $T_{1/2} = 11.8 \pm 3.1 , h$ $AUC_{(0-36h)} = 8.3 , \mu M , h$</td>
<td>0.90%</td>
<td></td>
</tr>
<tr>
<td>Onions (100 g) Aglycone</td>
<td>47 mg 544 mg</td>
<td>NM NM</td>
<td>1.17 \mu M 1.69 \mu M</td>
<td>(127)</td>
</tr>
<tr>
<td>Quercetin-3-O-glucoside</td>
<td>151 mg</td>
<td>$C_{max} = 5.0 , \mu M$ $T_{max} = 0.62 \pm 0.2 , h$ $T_{1/2} = 18.5 \pm 0.8 , h$ $AUC_{(0-72h)} = 19.1 , \mu M , h$</td>
<td>3.0%</td>
<td>(128)</td>
</tr>
<tr>
<td>Quercetin-4′-O-glucoside</td>
<td>154 mg</td>
<td>$C_{max} = 4.5 , \mu M$ $T_{max} = 0.45 \pm 0.08 , h$ $T_{1/2} = 17.7 \pm 0.9 , h$ $AUC_{(0-72h)} = 18.9 , \mu M , h$</td>
<td>2.6%</td>
<td></td>
</tr>
<tr>
<td>Rutin</td>
<td>94 mg</td>
<td>$C_{max} = 0.18 , \mu M$ $T_{max} = 6.0 \pm 1.2 , h$ $T_{1/2} = 28.1 \pm 6.4 , h$ $AUC_{(0-36h)} = 3.7 , \mu M , h$</td>
<td>NM</td>
<td>(129)</td>
</tr>
<tr>
<td>Food source/aglycone/glycoside</td>
<td>Quercetin dose</td>
<td>Plasma pharmacokinetics</td>
<td>Urinary excretion/concentration</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>--------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Quercetin-4′-O-glucoside</td>
<td>94 mg</td>
<td>(C_{\text{max}} = 3.5 , \mu M , h)</td>
<td>T(_{\text{max}}) = less than 0.5 h</td>
<td>NM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T(_{1/2}) = 21.6 ± 1.9 h</td>
<td>AUC(_{\text{0-\infty}}) = 18.8 , \mu M , h</td>
<td></td>
</tr>
<tr>
<td>Quercetin aglycone</td>
<td>1500 mg (daily per 1 week)</td>
<td>(C_{\text{max}} = 5.1 \times 10^{-6} , \mu M , h)</td>
<td>T(_{\text{max}}) = 3 h</td>
<td>1.18%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T(_{1/2}) = 3.47 h</td>
<td>AUC(_{\text{0-\infty}}) = 0.21 , \mu M , h</td>
<td></td>
</tr>
<tr>
<td>Quercetin aglycone with fat-free muffin (< 0.5 g fat)</td>
<td>1095 mg</td>
<td>(C_{\text{max}} = 1.1 , \mu M)</td>
<td>T(_{\text{max}}) = 5.7 h</td>
<td>NM</td>
</tr>
<tr>
<td>Quercetin aglycone with low-fat muffin (4.0 g fat)</td>
<td></td>
<td>(C_{\text{max}} = 1.24 , \mu M)</td>
<td>T(_{\text{max}}) = 5.4 h</td>
<td></td>
</tr>
<tr>
<td>Quercetin aglycone with fat-free muffin (15.4 g fat)</td>
<td></td>
<td>(C_{\text{max}} = 1.6 , \mu M)</td>
<td>T(_{\text{max}}) = 6.7 h</td>
<td></td>
</tr>
</tbody>
</table>

\(C_{\text{max}}\): maximal plasma concentration; T\(_{\text{max}}\): time to reach C\(_{\text{max}}\); T\(_{1/2}\): elimination half-time; AUC: area under plasma concentration-time curve; NR: not reported; NM: not measured.

Figure 2. Major processes involved in oral bioavailability of quercetin in humans (see the text for details); SGLUT1: sodium-glucose cotransporter; LPH: lactase phlorizin hydrolase (adapted from Varoni et al., 2016 (122)).
In conclusion, quercetin bioavailability is poor after a single oral intake and is characterized by high interindividual variability in its metabolism. According to pharmacokinetics data (table I), it seems that glucosides from onions possess a higher absorption rate compared to the glycosides from apples, tea, red wine or aglycones. Many factors may affect quercetin absorption including food matrix, dietary fat, vitamin C status, sugar moieties, genetic polymorphisms, composition of gut microbiota, taking drugs, body mass index, lifestyle, and health status. However, there is no clear evidence demonstrating that gender and age affect quercetin bioavailability, although the existing studies involved a small number of volunteers. In any case, larger studies (N ≥ 20) are warranted to accurately evaluate bioavailability of quercetin, as well as more research is needed to develop (nano)formulations for improving its absorption and efficacy.

GENERAL MECHANISMS

Induction of anti-proliferative effects

Cancer progression is due to the uncontrolled growth of malignant cells, unable of either undergoing apoptosis or senescence. Therefore, the arrest of both proliferation and cell-cycle progression represents a relevant target of anticancer drugs. Quercetin elicits antitumor effects in different in vitro and in vivo models (9).

In this regard, it has been demonstrated that quercetin suppressed hepatocellular carcinoma (HCC) cell proliferation in a concentration- and time-dependent manner as well as induced cell-cycle arrest at different phases, in relation to the cell line employed. Among the 13 HCC cell lines tested, quercetin blocked cell cycle in G0/G1, S or G2/M phases in 4, 2 and 6 lines, respectively (10). In HepG2 cell lines, quercetin reduced cell proliferation along with lowering the expression of the checkpoint kinase-1 (CHEK1), leading to the downstream regulation of both cyclins A and E and hence the cell-cycle blockage (11). Moreover, an in vivo study revealed that the anticancer activity of quercetin against thioacetamide-induced HCC in rats was due to the inhibition of casein kinase-2α (CK2α), which in turn induced the suppression of cyclin D1 and Ki-67, pivotal markers of proliferation (12). A study performed in cervical cancer cell line (HeLa) evidenced that quercetin anti-proliferative activity may be due to the downregulation of phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), and WNT pathways, leading to cell-cycle arrest in G2/M phase (13). Furthermore, quercetin blocked the cell cycle at the sub-G1 phase in gemcitabine-resistant pancreatic cancer cells (MIA PaCa-2), via a mechanism involving the reduction of the receptor for advanced glycation end products (RAGE), highly expressed by cancer cells, and the inhibition of the PI3K/Akt/mTOR axis (14). In addition, quercetin enhanced the effect of paclitaxel in prostate cancer cells (PC-3), where it significantly inhibited cell proliferation and arrested cell cycle at the G2/M phase (15). Finally, Soll and co-workers showed that quercetin hindered melanoma cells (B16) proliferation equal to etoposide, by increasing sub-G1 population, suggesting apoptotic cell death (16).

The reported evidence summarized in table II suggests the anti-proliferative and cell-cycle blocking properties of quercetin in a wide plethora of cancers both in vitro and in vivo.

Induction of cell death

Quercetin exerts its anticancer activity by promoting multiple cancer cell death mechanisms (figure 3). Cell death is classified into two main categories: programmed and unscheduled, as necrosis. Apoptosis is the most known and characterized programmed cell death (PCD) mechanism. It is caspase-dependent and relies upon two main pathways: the intrinsic (or mitochondrial) and the extrinsic (or death receptor) pathway (17). A plethora of studies reported quercetin’s ability to promote intrinsic, extrinsic or both apoptotic pathways in multiple cancer cell models including breast, colon,
Table II. Effects of quercetin on cell-cycle progression.

<table>
<thead>
<tr>
<th>Effects on Cell Cycle</th>
<th>Concentration/dose</th>
<th>Time of exposure</th>
<th>Experimental model</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockage of G0/G1, S or G2/M phases</td>
<td>25-100 µM</td>
<td>48 h</td>
<td>13 HCCa cell lines</td>
<td>(10)</td>
</tr>
<tr>
<td>Reduction of CHK1 and cyclins A/E</td>
<td>20-100 µM</td>
<td>48 h</td>
<td>HepG2 cells</td>
<td>(11)</td>
</tr>
<tr>
<td>Block in G2/M phase via downregulation of PI3K, MAPK and WNT pathways</td>
<td>25-50 µM</td>
<td>24-48 h</td>
<td>HeLa cells</td>
<td>(13)</td>
</tr>
<tr>
<td>Sub-G1 population increase, via RAGE involvement and modulation of PI3K/AKT/mTOR axis</td>
<td>25-200 µM</td>
<td>48 h</td>
<td>MIA Paca-2 GEMR cells</td>
<td>(14)</td>
</tr>
<tr>
<td>Reduction of BTG2, p21 and p27 expression</td>
<td>11.39 µM (+ 2.85 µM of curcumin)</td>
<td>48 h</td>
<td>K562 cells</td>
<td>(131)</td>
</tr>
<tr>
<td>Fall of CK2α, cyclin D1 and Ki-67 expression</td>
<td>100 mg/kg</td>
<td>5 days/week (8 weeks in total)</td>
<td>Thioacetamide-induced HCCa in rats</td>
<td>(12)</td>
</tr>
<tr>
<td>Increase of cells in sub-G1</td>
<td>50 mg/mL</td>
<td>24-48 h</td>
<td>B16 cells</td>
<td>(16)</td>
</tr>
<tr>
<td>Arrest of cell cycle at the G2/M phase</td>
<td>20 µM</td>
<td>24 h</td>
<td>PC-3 cells</td>
<td>(15)</td>
</tr>
</tbody>
</table>

*Hepatocellular carcinoma.

Figure 3. Schematic representation of quercetin-induced cell death mechanisms.
Liver, lung and gastric cancer, melanoma, glioma, and leukemia, both in vitro (20-350 µM) and in vivo (10-500 mg/kg) (9, 18, 19).

Apart from apoptosis, also autophagy represents a PCD mechanism. Although in most cases autophagy acts as a protective cellular process, thus eventually promoting tumor progression, in other circumstances autophagy can lead to cell death (17). As recently reviewed, quercetin promoted in vitro (12.5-160 µM) and in vivo (50-120 mg/kg) autophagic cell death and/or cytoprotective autophagy in leukemia, glioma, gastric, breast, ovarian (20), and lung cancer (21).

Accumulating evidence points out that multiple non-apoptotic forms of PCD also called non-canonical, can be triggered through independent apoptosis when the apoptotic process is altered or inhibited. Ferroptosis is an iron-dependent non-canonical PCD mechanism, driven by the accumulation of lipid peroxides. In hepatocellular carcinoma HepG2 cells, quercetin (50 µM) promoted both apoptosis and ferroptosis (22). Indeed, lysosome-dependent cell death induced by quercetin was associated with the promotion of ferritin degradation (22), a process known as ferritinophagy, which enhances the cellular free iron content, thus increasing lipid peroxidation and promoting ferroptotic cell death (23). Necroptosis, instead, relies on the activation of RIPK1 (receptor interacting serine/threonine kinase 1) that leads to the formation of the so-called necrosome complex. Notably, in MCF-7 breast cancer cells, quercetin (50 µM) suppressed cell proliferation by promoting both apoptosis and necroptosis. Indeed, the inhibition of RIP1K by necrostatin-1 as well as the inhibition of apoptosis by Z-VAD-fmk (a pan-caspase inhibitor) restored MCF-7 cell viability, pointing out quercetin’s ability to trigger these two cell death pathways (24).

Lastly, mitotic catastrophe (MC) is a type of PCD occurring during mitosis because of severe DNA damage, impaired mitotic machinery, and/or failure of mitotic control points (25). A549 non-small cell lung cancer cells treated with quercetin (10-60 µM) displayed monopolar and multipolar spindles, misaligned and mis-segregated chromosomes (26), all features related to MC (25). In addition, polyploidy, cell enlargement, and multinucleation, observed in A549-treated cells, further confirmed the induction of mitotic catastrophe by quercetin (26).

Inhibition of cancer cells’ migration and invasion

The progression of cancer development may lead to the acquisition by tumor cells of the ability to invade nearby tissues and form metastases in other organs, representing so far one of the greatest challenges in oncology (27). Quercetin was reported to block both migration and invasion of non-small cell lung cancer cells, in vitro and in a xenograft mice model, through the inhibition of the Src-mediated Fn14/NF-κB pathway, known to promote cell survival and metastatic capabilities of cancer cells (28). Moreover, Guo and co-workers showed that quercetin hindered metastasis of pancreatic ductal adenocarcinoma cells, both in vitro and in vivo, via the inhibition of sonic hedgehog and tumor grow factor (TGF)-β/Smad signaling pathways, that in turn brought to a suppression of the epithelial-mesenchymal transition (EMT) of these cells. This process involves the acquisition of the mesenchymal stem cells phenotype by epithelial ones and, in pathological conditions, it leads to resistance and migration of cancer cells (29). The effect on EMT was observed also both in skin squamous carcinoma, where quercetin inhibited migration and invasion through the reduction of Src/STAT3/S100A7 signaling pathway (30), and in different oral squamous carcinoma cells, where its treatment negatively affected both matrix metalloproteinase (MMP) and TGF-β1 expression (31). In this last type of cancer, quercetin also hampered migration and invasion by regulating micro-RNA-16 and homeobox A10, relevant in the correct regulation of cell proliferation (32). The anti-metastatic properties of quercetin have been also evaluated...
in osteosarcoma cell lines, in which it reduced the expression of MMPs and increased that of their tissue inhibitors (TIMPs), along with affecting the parathyroid hormone receptor-1, a typical biomarker of metastatic osteosarcoma cells (33). MMPs and cadherins, markers of mesenchymal and epithelial cells, respectively, have been shown to be modulated by quercetin in estrogen-receptor (ER) positive breast carcinoma (BRC) cells, along with potentiating antitumor activity of tamoxifen (34), as well in ovarian metastatic cancer cells, where it inhibited also PI3K/Akt, Ras/Raf pathways, EGFR, and claudins expression, therefore polarizing cells towards the epithelial state (35). Triple-negative BRC cells have been employed to study the anti-migration and anti-invasion properties of quercetin, demonstrating to be an inhibitor of the PI3K/Akt pathway together with MAPK one (36). Another relevant pathway in metastasis is JAK/STAT one, which was demonstrated to be affected by quercetin in hepatocarcinoma cells both in vitro and in vivo (37). Additionally, Lu and collaborators showed that quercetin treatment decreased the expression of Twist2 and EpCAM and increased that of E-cadherin, other pivotal factors involved in EMT, in prostate cancer cells resistant to docetaxel (38). Overall, these reports, summarized in Table III, support the remarkable value of quercetin as an anti-metastatic agent, given its capability to hamper EMT transition by simultaneously targeting both membrane and intracellular signaling pathways leading to the up-regulation of multiple factors involved in invasion and migration of cancer cells.

Table III. Main migration- and invasion-related pathways affected by quercetin in different cell lines.

<table>
<thead>
<tr>
<th>Migration-/invasion-related pathways</th>
<th>Concentration</th>
<th>Time of exposure</th>
<th>Type of cancer</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease of MMPs, cadherins, EGFR and claudins expression; blockage of PI3K/Akt and Ras/Raf pathways</td>
<td>50-75 µM</td>
<td>24 h</td>
<td>Ovarian metastatic cancer</td>
<td>(35)</td>
</tr>
<tr>
<td>Inhibition of the Src-mediated Fn14/NF-κB</td>
<td>100 µM</td>
<td>48 h</td>
<td>Non-small cell lung cancer</td>
<td>(28)</td>
</tr>
<tr>
<td>Inhibition of Src/STAT3/S100A7; blockage of EMT</td>
<td>20-40 µM</td>
<td>24 h</td>
<td>Skin squamous carcinoma</td>
<td>(30)</td>
</tr>
<tr>
<td>Inhibition of hedgehog and TGF-β/Smad; blockage of EMT</td>
<td>10-100 µM</td>
<td>24-48 h</td>
<td>Pancreatic ductal adenocarcinoma</td>
<td>(29)</td>
</tr>
<tr>
<td>Decrease of MMP and TGF-β1 expression</td>
<td>40 µM</td>
<td>24 h</td>
<td>Oral squamous carcinoma</td>
<td>(31)</td>
</tr>
<tr>
<td>Suppression of MMPs, TIMPs and parathyroid hormone receptor-1</td>
<td>20-100 µM</td>
<td>48 h</td>
<td>Osteosarcoma</td>
<td>(33)</td>
</tr>
<tr>
<td>Decrease of Twist2 and EpCAM and increase of E-cadherin expressions</td>
<td>10 µM</td>
<td>48 h</td>
<td>Docetaxel-resistant prostate cancer</td>
<td>(38)</td>
</tr>
<tr>
<td>Inhibition of PI3K/AKT and MAPK pathways</td>
<td>25-50 µM</td>
<td>24-48 h</td>
<td>Triple-negative breast cancer</td>
<td>(36)</td>
</tr>
<tr>
<td>Blockage of JAK/STAT pathway</td>
<td>80-120 µM</td>
<td>12-36 h</td>
<td>Hepatocarcinoma</td>
<td>(37)</td>
</tr>
<tr>
<td>Inhibition of MMPs and cadherins expression</td>
<td>5-100 µM</td>
<td>48 h</td>
<td>Estrogen-receptor positive breast carcinoma</td>
<td>(34)</td>
</tr>
<tr>
<td>Regulation of micro-RNA-16 and homeobox A10</td>
<td>25-100 µM</td>
<td>24-48 h</td>
<td>Oral squamous carcinoma</td>
<td>(32)</td>
</tr>
</tbody>
</table>
Epigenetic mechanisms
Recent research has shown that post-transcriptional histone modifications, changes in DNA methylation status, and regulation of non-coding RNAs can alter gene expression and modify the development of several types of cancer (39).

Studies using human xenografts and acute myeloid leukemia cell lines (HL60 and U937) have shown that treatment with quercetin (50 µM) downregulates histone deacetylase I (HDAC-I) protein levels, leading to DNA demethylation and accumulation of acetylated histones 3 and 4 in the promoter regions of genes involved in apoptosis pathways, leading to their transcriptional activation (40). Recently, a novel chitosan-based quercetin nanohydrogel (ChiN-H/Q) has been reported to reduce the inhibition of DNA methyltransferases (DNMT1/3A/3) and increase DNA methylation in HepG2 cancer cells with a half maximal inhibitory concentration (IC50) of 331 µM (41). Moreover, overexpression of the enzyme HDAC8 is another important epigenetic alteration that has been reported in colon cancer. Its inhibition in HCT116 cells by quercetin (IC50: 181.7 µM) leads to increased acetylated H3K9 (histone H3, lysine 9) and apoptosis through the activation of caspase-3/-7 (42). Regarding the control of post-transcriptional mechanisms, experimental studies suggested that quercetin modulates the expression of DBH-AS1, which is an important epigenetic reader in cancer therapy. Moreover, quercetin (0.87-7.79 µM) inhibition of carbonic anhydrase isoforms (CA II, CA IX, and CA XII) was observed in previous cancer studies (43). Recently, intravenous administration of quercetin-modified metal-organic frameworks (Zr-MOF-QU) (50 mg/kg), a novel type of Zr-MOF nanoparticles, showed excellent efficiency for CA IX inhibition in tumor-bearing mice (44). Several in vitro studies showed that quercetin was able to upregulate the miR-let 7 micro-RNA family in pancreatic ductal adenocarcinoma cells, thus interfering with K-Ras's pathways. Furthermore, miR-16, miR-217, and miR-145 were found to be modulated by quercetin (0.5-100 µM) in lung adenocarcinoma, osteosarcoma, and ovarian cancer cells, respectively. In particular, miR-145 was shown to inhibit and control target genes involved in apoptosis, thus demonstrating the ability of quercetin to influence micro-RNA expression patterns related to cancer (45).

An interesting study reported that quercetin (20 µM) increases the efficacy of bromodomain and extraterminal domain inhibitors by suppressing the heterogeneous nuclear ribonucleoprotein A1, a nuclear protein, controlling mRNA translation and transport, as well as by decreasing survivin, an antiapoptotic protein (46), in several tumor cell lines. An in-depth study was carried out to understand the mechanism of action of quercetin by quantifying the biochemical activity of DNA methyltransferases, HDACs, histone methyltransferases, and methylation of oncosuppressor gene selections and global genomic DNA methylation on treated HeLa cells. Enzymatic assays showed that quercetin 25 and 50 µM modulates these activities in a dose-dependent manner, while molecular docking studies suggested that quercetin could be a competitive inhibitor by interacting with residues within the catalytic cavity of several DNA methyltransferases and HDACs (47).

Future research has the potential to expand the use of dietary-based polyphenols, such as quercetin, in treating cancer, especially in combination with conventional drugs. Their use could be an alternative and effective method in cancer therapy leading to restoration of several aberrant epigenetic alterations.

Angiogenesis
The ability to induce the formation of new blood vessels is one of the peculiar activities of cancer cells, which allows them to better access nutrients and oxygen and constitutes an excellent way of tumor dissemination (48). Quercetin modulates different cell signaling pathways involved in angiogenesis (figure 4). The modulation of vascular endothelial growth factor (VEGF) pathway seems to be
especially involved in this effect, considering its well-known key role in survival of endothelial cells and related tumor angiogenesis (49). In HUVEC cells, quercetin (10-40 µM) blocked the VEGF-mediated phosphorylation of VEGF receptor 2 and its downstream protein kinases Akt, mTOR, and ribosomal protein S6 kinase (50). Similar results were recorded in PC-3 prostate cancer cells, where quercetin (10-40 µM) inhibited the secretion of VEGF (50). Moreover, intraperitoneal administration of quercetin (20 mg/kg/day) inhibited the activation of Akt, mTOR and P70S6K proteins and led to decreased tumor’s weight and volume in a murine prostate xenograft model (50).

Balakrishnan et al. (51) studied the antiangiogenic potential of a gold nanoparticle-based delivery system. The formulation (50-100 µM) was able to inhibit MMP-2 and MMP-9 activity as well as to reduce the expression of p-EGFR/VEGFR-2 and p-PI3K/Akt/p-Akt/p-GSK-3β downstream signalling molecules on human breast cancer cell lines (MCF-7 and MDA-MB-231) and the expression of VEGFR-2 in HUVECs. Similar results were recorded on chick embryos, where the formulation at 50 µM inhibited neovascularization.

Analogously, Lupo et al. suggested that quercetin and its permethylated form at 25 µM inhibited cell viability and migration, downregulated VEGFR-2 and reduced Akt, ERK and JNK levels on human primary endothelial cells isolated from retinal microcapillaries (HREC). Similar results were obtained on an ex vivo model of rabbit aortic ring, where quercetin and its permethylated form disrupted microvessels formation (52).

A study performed on an abdominal aortic aneurysm (AAA) mouse model also demonstrated that quercetin (60 mg/kg) decreased neovascularization and the expression of proangiogenic mediators, including VEGF-A, intercellular adhesion molecule 1 (ICAM-1), vas-

Figure 4. Major angiogenesis signaling pathways modulated by quercetin.
Anticancer activity of quercetin

Cancer cell adhesion molecule 1 (VCAM-1) and vascular endothelial cadherin, and inhibited the expression of cyclooxygenase-2 (COX-2) and hypoxia-inducible factor 1α (HIF-1α), associated with the upregulation of VEGF-A. The same study showed that quercetin-3-O-glucuronide, a quercetin major circulating metabolite, downregulated COX-2, HIF-1α and VEGF-A expression and matrix metalloproteinases MMPs activities in vascular smooth muscle cells isolated from AAA mice after 72h treatment at a concentration of 50 µM (53). A similar decreased expression of proangiogenic mediators and metastasis-associated factors, such as VEGF-A, VEGFR-2, COX-2, E-cadherin, Twist1 gene and integrin ITGβ6, was observed in a human gastric cancer xenograft mouse model after treatment with quercetin (20 mg/kg) or even more with its combination with the antitumoral drug irinotecan (54). It was also found that low concentration of quercetin (10 µg/mL) inhibited tube formation in HUVECs treated with conditioned medium obtained from U251 glioblastoma cells possibly by downregulating VEGF-A and MMPs (55).

Finally, the intravenous administration of polymer micelle-nanoencapsulated quercetin (60 mg/kg) significantly suppressed the growth of xenograft A2780S ovarian tumors in athymic nude mice through a significantly inhibition of microvessel density. Moreover, treating A2780S cells with quercetin (0–30 µg/mL, 48 h) in vitro produced higher levels of phosphorylated p44/42 MAPK and phosphorylated Akt, which are critical intracellular mediators of angiogenesis (56).

EFFECT OF QUERCETIN ON THE MOST COMMON CANCERS

Breast cancer
The anticancer activity of quercetin on breast cancer (BRC) is mediated via regulation of various signaling pathways, but the exact mechanism of its action remains elusive. In a HER2-overexpressing (BT-474) BRC cell line, quercetin (20–60 µM) activated the extrinsic apoptotic pathway. In MDA-MB-231 cells, quercetin modulated the Akt/AMPK/mTOR pathway (57) and, besides the effects on signaling proteins, at 20 µM it increased the activity of several cell-cycle regulatory proteins such as p53, p21, and GADD45 (58). In the same cell line, quercetin (20–80 µM) inhibited aerobic glycolysis via impairing PFKP-LDH axis (59). Those results were confirmed in a xenograft BRC model, where quercetin (50 mg/kg twice daily intraperitoneally for a month) suppressed glycolysis and tumor metastasis (60).

Quercetin 100 µM was also able to inhibit migration and invasion of BRC stem cells via ALDH1A1, CXCR4, and EpCAM downregulation (61). The exposure of BRC cell lines to quercetin (50 and 100 µM) reduced the expression of SLUG, SNAIL, and Twist transcription factors, while up-regulated E-cadherin, thus suggesting that quercetin can act as an EMT inhibitor (58). In a study by D’Arrigo et al. performed on MCF-7 (wild-type p53) and T47D (mutant p53) cells (62), quercetin, like other flavonoids, showed a relevant degree of complementarity with estrogen and androgen receptors (62) and inhibited the survival of ER+ tumor-initiating cells (63). Moreover, an in silico and in vitro screening indicated that quercetin had also a high binding affinity for the cyclin-dependent kinase 6 (CDK6) and inhibited 50% of its ATPase activity at 5.89 µM (64).

A novel nanoformulation of quercetin composed of hyaluronic acid, copper ion, chelated dextran-aldehyde was tested on MDA-MB-231 cells and BRCA-mutant TNBC HCC1395 cells. The formulation was highly cytotoxic for HCC1395 cells, where it induced DNA damage and apoptosis. In HCC1395-tumor-bearing nude mice, treatment with the nanoformulation induced a decrease in tumor volume higher than that observed for quercetin (65). As a potent heat shock protein (HSP) 70 inhibitor, quercetin (50 µM) was used as sensitizer in a new modulated electro-hyperthermia treatment. On 4T1 murine BRC cells, querce-
tin synergistically decreased cell viability with respect to the two single pharmacological strategies (66). As a P-gp inhibitor, nanoformulated quercetin plus paclitaxel was tested both in vitro and in vivo. In MCF-7 cells, quercetin 33 µM decreased the efflux of paclitaxel and synergistically enhanced its cytotoxicity; in xenograft MCF-7 BRC, intravenous administration of quercetin (5.1 mg/kg) decreased tumor weight without toxicity to normal tissues (67). Moreover, the inhibitory effects of quercetin on CYP450 enzymes were exploited to improve mycophenolic acid’s anticancer activity on 7,12-dimethylbenz(a)anthracene-treated rats (68). In conclusion, the pleiotropic activity of quercetin against BRC and in particular its ability to sensitize cancer cells and counteract drug resistance makes it a promising candidate for well-designed oncological clinical trials.

Ovarian and prostate cancers

Several studies have been conducted to elucidate the molecular mechanisms of quercetin’s activity on ovarian cancer (OC). Quercetin inhibited cells’ growth and promoted apoptosis in a concentration-dependent manner in different OC cell lines. As an example, its proapoptotic activity was observed on A2780S cells, where quercetin (0.4-100 µM) activated caspase-3 and -9, reduced the expression of MCL-1 and Bcl-2, and increased the expression of Bax. Moreover, on the same cell line, it inhibited cell proliferation through the reduction of phosphorylated p44/42 MAPK and phosphorylated Akt (56). Similar results were recorded in SKOV3 CDDP3 cisplatin-resistant cells, where quercetin (10-50 µM) interfered with the G2/M phase, even if it did not affect cyclin B1 levels (69). Besides, quercetin 20 µM induced endoplasmic reticulum stress in cisplatin-sensitive OV2008 cells and their resistant variant resulting in mitochondria-mediated apoptosis via a p-STAT3/Bcl-2 and caspase-dependent pathways (70), as demonstrated by Bcl-2 and Bc1-xL reduction and caspase-3, -9, Bid, Bax, Bad, and cytochrome c increase. Similarly, quercetin at 50 and 75 µM decreased viability and induced apoptosis on human metastatic PA-1 cells, as indicated by Bcl-2 and Bc1-xL decrease and caspase-3, caspase-9, Bid, Bad, Bax, and cytochrome c increase (71). A recent study tested the antitumor effects of quercetin encapsulated into monomethoxy poly(ethylene glycol, PEG)-poly(ε-caprolactone) micelles (56). The nanoformulation (60 mg/kg) significantly inhibited tumor volume, induced apoptosis and strongly inhibited angiogenesis of xenograft A2780S ovarian tumors. Of note, the nanoformulation was well tolerated, as indicated by no changes in animals’ body weight (56).

Furthermore, the effect of a quercetin-PEGylated liposomal formulation was investigated in sensitive and cisplatin-resistant A2780 ovarian cancer cells. The formulation (50 µM) caused apoptosis and G0/G1 and G2/M arrest, as well as inhibited cell proliferation of both clones. In vivo studies performed on xenograft sensitive or cisplatin-resistant A2780 ovarian tumors, found that the formulation (50 mg/kg) blocked tumor growth in both mice models (72).

On prostate cancer (PC) LNCaP cells, quercetin 100 µM decreased Bc1-xL/Bc1-xS ratio and amplified the efflux of Bax to the mitochondrial matrix leading to apoptosis (73). In addition, quercetin (5-100 µM) downregulated HSP90 expression and led to growth inhibition and apoptosis of PC-3 cells (74). In the same cell line, quercetin (25-125 µM) inhibited cell viability by reducing the mRNA expression of different mitogenic factors including insulin-like growth factors (IGF)-I and II and increased that of IGFBP-3Rbeta, which led to a reduced secretion of IGF-I and II (75).

A recent study reported that quercetin (50-500 µM) reduced the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), which is overexpressed in PC, induced apoptosis, and blocked EMT and invasion and migration of PC-3 cells (38). Those results were confirmed on a mouse PC-3 xenograft tumor, where intraperitoneal quercetin (75 mg/kg) targeted MALAT1 and blocked
tumor growth (38) and angiogenesis through an increase in thrombospondin-1 protein and mRNA expression (76).

Several in vivo studies recorded the quercetin’s ability of enhancing the therapeutic effect of different drugs. The combination of quercetin (50 mg/kg) and paclitaxel (5 mg/kg) synergized the inhibition of tumor growth induced by paclitaxel alone in a mouse PC-3 xenograft tumor (15). Moreover, quercetin (75 mg/kg) synergized with 2-methoxyestradiol in inhibiting tumor growth, increasing Bax/Bcl-2 ratio and caspase-3 activation, and reducing microvessel density in both androgen-dependent LNCaP and androgen-independent PC-3 xenograft tumors (77) and was able to reverse docetaxel resistance (78).

The cancer preventive effect of quercetin was also highlighted in a clinical trial where 433 men with confirmed primary PC and 538 controls were evaluated in a case-control study: 24 mg intake of quercetin/day reduced PC risk by 27% (79).

Lung cancer
Lung cancer (LC) includes both small cell lung cancer and non-small cell LC (NSCLC), despite the latter alone is responsible for 85% of tumors in this organ (80). Several in vitro studies reported the antiproliferative and pro-apoptotic activity of quercetin on LC cells, mediated by both intrinsic and extrinsic pathways (18). For instance, in NSCLC cells quercetin prompted mitochondrial depolarization triggering an imbalance in the Bax/Bcl2 ratio and downregulating IL-6/STAT3 signaling pathway. Besides, quercetin triggered TRAIL-induced apoptosis by TNF-family death receptors binding (9, 18) and by the regulation of epigenetic pathways (81). In particular, in the p53-mutant H1299 LC cells, quercetin 5 µM raised p300 expression, which is responsible for the acetylation of the lysine residues of histones. Thanks to this mechanism, quercetin enhanced the expression of the death receptor DR5 and the anticancer effects of HDAC inhibitors (trichostatin and vorinostat) (81). Due to the Janus face of autophagy, the effect of quercetin-activated autophagy on apoptosis is complicated, since it could be partner or opponent (82). A very recent publication unraveled that quercetin (12.5-100 µM) induced pro-apoptotic autophagy in two NSCLC LC, A549 and H1299, involving the histone/protein deacetylase sirtulin 1 (SIRT1) and its downstream effector AMPK (AMP-activated protein kinase), potent stimulators of cellular autophagy (21).

Cytoskeleton components, such as microtubules, microfilaments and vimentin, are key targets for anticancer treatment, due to their importance in the regulation of mitosis, cell division, cell migration, and cell death (83). Quercetin (10-60 µM) impacted on these essential cytoskeletal elements, disassembling vimentin, microfilaments, and microtubules in A549 cells and contributing to the failure of cytokinesis, which leads to apoptosis and mitotic catastrophe (26). Besides, the inhibition by quercetin of vimentin and N-cadherin (26), both markers of EMT, contrasted A549 migration, hence their metastatic potential. A recent study highlighted that the inhibition by quercetin of NSCLC cells (HCC827) proliferation and migration was also mediated by the Src family kinases (28), high levels of which activate Fn14/NF-κB signaling and promote the metastatic potential of NSCLC cells (84). Other in vitro (100 µM) and in vivo (HCC827 xenografted BALB/c mice intraperitoneally treated with 100 mg/kg/day quercetin for 3 weeks) studies confirmed that the anti-NSCLC effects of quercetin clearly depended on the inhibition of Src.

Receptor tyrosine kinases (RTKs) represent one of the most frequently deregulated family of proteins in LC, playing a key role in the control of tumor cell proliferation (85). Through a computational studies, Baby and colleagues (86) demonstrated that quercetin mimics the interactions of ATP in the active site of RTKs (EGFR, FGFR1, IGF1R and c-Met) leading to inhibition of RTKs overexpression. A recent in silico screening and in vitro experiments evidenced that the pro-apoptotic ef-
fects of quercetin (~50 µM) involve the inhibition of CDK6 (64), the nuclear expression of which is negatively associated with the overall survival of lung cancer patients (87). Different quercetin-loaded nanoparticles synergistically enhanced the anticancer efficacy of paclitaxel (88, 89) and gefitinib (90) in vitro and in vivo. As an example, quercetin and gefitinib encapsulated into PLGA-PEG nanoparticles synergistically reduced the IC50 values of the single drugs on PC-9 cells (IC50 quercetin-nanoparticles: 2.12 µg/mL; IC50 gefitinib-nanoparticles: 2.57 µg/mL; IC50 quercetin/ gefitinib-nanoparticles: 0.67 µg/mL) (90).

Colorectal cancer
Quercetin has been shown to reduce proliferation and to induce apoptosis and cell-cycle arrest in a number of colorectal cancer (CRC) cells, such as HCT116, HT-29, SW 480, SW 620, Caco-2, LoVo, Colo320 DM cells (91). Specifically, van Erk et al. (2005) reported that 5 µM quercetin downregulates key cell-cycle genes (e.g., CDK6, CDK4 and cyclin D1) in Caco-2 cells (92). Moreover, at 20, 50, 100 and 200 µM it induces apoptosis in HT29 cells with a concentration-dependent mechanism involving the Akt/CSN6/Myc signaling axis (93) and at 200 µM exhibits pro-apoptotic effects on Caco-2 and SW620 cell lines via nuclear factor kappa-B (NF-κB) signaling pathway inhibition and Bcl-2 and Bax modulation (94). In the same cell line (Caco-2), quercetin (20-100 µM) has been found to induce apoptosis through the modulation of the apoptotic extrinsic pathway (95) and reduce topoisomerase II-induced DNA cleavage (96). An intriguing result is the demonstration that nutritionally relevant concentrations of quercetin (0.1 or 1 µM) mimicked the 17β-estradiol-induced apoptotic effect in ERβ1-containing DLD-1 colon cancer cell line and activated p38, which leads to caspase-3 activation and PARP cleavage (97).

Quercetin (0.1-100 µM) may also alter the metabolism of actively proliferating cells through the significant decrease in ornithine decarboxylase activity and polyamines biosynthesis observed in human DLD-1 colon cancer cell (98). Recent studies suggest that quercetin may increase the cytotoxic effect of standard anti-tumoral drugs also in CRC cells. In particular, quercetin (33 µM) increased doxorubicin accumulation and enhanced the cytotoxic effect of doxorubicin on P-gp-overexpressing SW620/Ad300 cells (99). Similar results were recorded on HT-29 cells, where quercetin (50 µM) enhanced cisplatin-induced apoptosis. The effect was partially due to the inhibition of the activation of NF-κB expression (100).

Quercetin also exerts antiangiogenic effects in colorectal cancer cells. Since DLD-1 colon cancer cells have been found to release angiogenic factors, Xiao et al. co-cultured these cells with HUVECs. At 100 and 200 µM, quercetin significantly reduced endothelial tube formation (101).

Several murine and rat models have been used to investigate quercetin effects in CRC. Shree et al. tested the chemopreventive effect of quercetin (25 or 50 mg/kg bodyweight) on 1,2 dimethyl hydrazine (DMH)-induced rat colon cancer. Quercetin significantly improved DMH-induced pathological modifications. In particular, it reduced proliferation and colon cancer early markers (mucin depletion and goblet cell disintegration), adenomatous polyposis coli and β-catenin, and tumor incidence and multiplicity (102). Similar results were recorded on N-methyl nitrosourea-induced rat colon cancer, where quercetin (50 mg/kg) blocked the overexpression of Wnt5a and up-regulated the expression of Axin-1, and decreased the serum level of TAG72 and GAL3 in colon cancer bearing rats (103).

Quercetin suppressed colon carcinogenesis also on mouse colon carcinogenesis induced by azoxymethane/dextran sodium sulfate. Quercetin (30 mg/kg) significantly decreased multiplicity and size of colon tumors and expression of oxidative stress and inflammation markers (104). A recent study suggested that 3,4-dihydroxyphenylacetic acid (0.05-200 µM), an antioxi-
Anticancer activity of quercetin

dant microbiota-derived metabolite of quercetin, protects against neoplastic mouse colonic transformation induced by hemin, a metabolite of myoglobin (105). In particular, the metabolite prevented the reduction of apoptosis, the increase in ROS levels and nucleic acids’ oxidation, and the decrease in the mitochondrial membrane potential caused by hemin exposure.

Overall, quercetin exerts chemotherapeutic and chemopreventive effects in colorectal cancer models, which have been demonstrated to be mediated through various mechanisms, including cell-cycle arrest, increase in apoptosis, antioxidant properties, regulation of signaling pathways involved in CRC development, inhibition of angiogenesis. Taking into account that quercetin is present in many commonly food items, its beneficial effects on CRC are of promise in the light of the well-established relationship between dietary habits and CRC risk.

Bladder cancer

The first study on quercetin and bladder cancer (BC) cell lines was carried out by Ma et al. (2006): quercetin 150 and 200 µM inhibited cell growth, induced apoptosis, and arrested cell cycle in G0/G1 phase (100 µM) (106). An antiproliferative effect of quercetin was also observed in human and murine BC cell lines (MB49, T24, UMUC3, 253J) via the activation of AMPK signaling (IC50: 40-60 µM) (107), but also via other mechanisms such as alterations in the extracellular catabolism of nucleotides (108) or activation of K channels (109). Besides, quercetin 100 µM downregulated MCT1 activity and promoted apoptosis in endothelial and T24 BC cells co-culture (110). Chen et al. reported that isoquercitrin (quercetin-3-O-glucoside) (ISO) 400 µM inhibited BC cells proliferation and promoted apoptosis via suppression of PI3K/Akt survival signaling pathway (111). Its antiproliferative effect was also demonstrated in T24 cells where 20-80 µM of ISO caused ROS overproduction and activation of the AMPK signaling pathway (112). ISO orally administered (doses were not indicated) inhibited BC growth also in nude mice (111). Other studies explored the use of quercetin in association with anticancer therapies with the aim of overcoming multiple drug resistance (MDR) phenotype (113). Quercetin (250 and 500 µM) plus gemcitabine 10 µM decreased the expression of proteins involved in MDR including the ABCC2 compared to the administration of the individual molecules alone (113). Moreover, quercetin plus cisplatin (both at 50 µM) synergistically reduced T24 and UMUC cell viability (114). A recent study documented that a quercetin-zinc complex ≥ 12.5 µM decreased viability, cell migration and invasiveness and increased apoptosis in BC cells, with a mechanism involving down-regulation of pAkt/Akt and MT1-MMP protein expression (115). In addition, quercetin incorporated in sodium or zinc titanate nanotubes (both at 25-200 µg/mL) decreased viability of BC cells and their ability to form clones, thus suggesting that these nanostructures can interfere with cancer cell proliferation (116).

CONCLUSIONS

Many in vitro and in vivo studies were performed on quercetin, which documented its ability of inducing anticancer effects on different tumors and through different mechanisms (figure 5) and its great potential in the oncological field. However, quercetin undergoes a complex metabolism, transport, and distribution, which may not allow to reach adequate concentrations for pharmacological effects in target tissues. Thus, appropriate plasma concentrations in a similar high range such as those used on in vitro preclinical models could be not achieved for quercetin and many of its anticancer activities recorded in vitro may not be attainable in vivo. Nanoformulation-based approaches including liposomes, microemulsion, nanoparticles, and solid lipid nanoparticles have been developed with improved bioavailability and biologic features such as biphasic, inotropic and lusitropic characteristics. As an example, the encapsulation of querce-
quin into biodegradable monomethoxy poly (ethylene glycol)-poly(ε-caprolactone) micelles improved the dispersion in water of quercetin and its in vivo anticancer activity (56). Similar results have been observed with PEGylated liposomal quercetin, which provided a sustained release of quercetin and resulted in an efficient formulation for in vivo tumor growth inhibition (72).

A crucial aspect in the oncological field is the identification of compounds able to selectively exert their effects on tumor cells without damaging healthy cells. What emerges from the few studies on normal human cells (lung embryonic fibroblasts, umbilical vein endothelial cells, peripheral blood lymphocytes) is that quercetin is able to block proliferation or induce apoptosis on cancer cells at concentrations (< 50 µM) exerting no or little effects on healthy cells (117). However, the safety profile of quercetin is not yet fully understood. Based on its polyphenol
Anticancer activity of quercetin

structure with high number of hydroxyl groups and pi orbitals, quercetin is associated in first instance with antioxidant properties. Taking into account the presence of a hydroxyl group in position 3 that is subject to tautomerism and two hydroxyl groups on the C-ring that are subject to oxidation, quercetin can also lead to the formation of highly reactive quinones. Quinones can react with thiols potentially causing DNA and protein damage (118). Antioxidant and pro-oxidant effects of quercetin depends on its cellular concentrations and on the cellular levels of reduced GSH: higher concentrations of quercetin increase the antioxidant capacity of cells; higher concentrations of quercetin reduce antioxidant capacity and GSH content leading to cellular damage (119). With particular regard to dietary supplementation, human intervention studies did not report pro-oxidative effects of quercetin at doses of 500-1000 mg/day (i.e., a high daily supplementation) administered up to 12 weeks, but it is still unclear whether quercetin could evoke pro-oxidative effects in humans after a long-term use (120).

Similarly, chronic toxicity animal studies evidenced potential nephrotoxic effects for quercetin, but human intervention studies rarely recorded adverse effects following supplemental quercetin intake, but no safety data are available after long-term use (> 12 weeks) of high quercetin doses (≥ 1000 mg) (120). Based on in vitro studies, some additional critical safety aspects emerged for quercetin. Quercetin emerged as a mutagenic and potentially carcinogenic compound in the Ames test, but long-term animal toxicity studies did not confirm its carcinogenic potential (121). These controversial results could be due to the high non-physiological concentrations used in the in vitro studies, which are often performed at high concentrations of quercetin, ranging from 25 μM to 200 μM, and do not take into account the complex pharmacokinetic profile of quercetin.

All in all, quercetin is a well-studied compound with a broad range of biologic advantages. A peculiar characteristic of quercetin is its ability to interact with multiple cellular targets and modulate the activity of several signaling pathways. Taking into account that they include key proteins within the same signaling network, quercetin may act with a pleiotropic, multilevel and synergistic mechanism of action. Thus, quercetin’s broad target profile may represent a useful therapeutic strategy to tackle one of the most complex dynamic human diseases like cancer. Further in vivo studies and sound clinical trials are required to definitely assess its safety and efficacy and grant a fully understanding of quercetin’s therapeutic potential both alone and in combination with standard anticancer chemotherapy.

CONFLICT OF INTERESTS
The authors declare that they have no conflict of interests.

REFERENCES
6. Guo Y, Mah E, Davis CG, et al. Dietary fat increases quercetin bioavailability in

Anticancer activity of quercetin

